ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Петербургский государственный университет путей сообщения Императора Александра I» (ФГБОУ ВО ПГУПС)

Кафедра «Высшая математика»

РАБОЧАЯ ПРОГРАММА

дисциплины
Б1.О.7 «ВЫСШАЯ МАТЕМАТИКА»
для направления подготовки
08.03.01 «Строительство»

по профилям

«Водоснабжение и водоотведение», «Промышленное и гражданское строительство» Форма обучения – очная, очно-заочная

> «Автомобильные дороги» Форма обучения – очная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа рассмотрена и утверждена на заседании кафедры «Высшая математика» Протокол № 4 от 17 декабря 2024 г.

Заведующий кафедрой «Высшая математика» 20 г.	E.A	. Благовещенская
СОГЛАСОВАНО		
Руководитель ОПОП ВО 20 г.	Н.В. Т	Твардовская
Руководитель ОПОП ВО 20 г.	Γ.A. I	Богданова
Руководитель ОПОП ВО 20 г.	А.Ф.	Колос

1. Цели и задачи дисциплины

Рабочая программа дисциплины «Высшая математика» (Б1.О.7) (далее – дисциплина) составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 08.03.01 «Строительство» (далее - ФГОС ВО), утвержденного «31» мая 2017 г., приказ Минобрнауки Российской Федерации №481с изменениями, утвержденными приказами Минобрнауки Российской Федерации от 26 ноября 2020 г. № 1456 и от 08.02.2021 №83.

Целью изучения дисциплины является освоение теоретических основ и развитие практических навыков применения математических методов, повышение культуры мышления, способности к обобщению, анализу, восприятию информации, постановке цели и выбору путей её достижения.

Для достижения цели дисциплины решаются следующие задачи:

- умение решения основных математических задач с доведением решения до практически приемлемого результата;
- усвоение базисных математических понятий, методов, моделей, применяемых при изучении естественнонаучных и специальных дисциплин;
- приобретение опыта простейшего математического исследования прикладных вопросов (перевод реальной задачи на математический язык, выбор методов её решения, в том числе и численных, оценка полученных результатов);
- развитие способности самостоятельно разбираться в математическом аппарате, содержащемся в литературе, связанной со специальностью.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Планируемыми результатами обучения по дисциплине является формирование у обучающихся компетенций и/или части компетенций. Сформированность компетенций и/или части компетенций оценивается с помощью индикаторов достижения компетенций.

Индикаторы достижения компетенций	Результаты обучения по дисциплине (модулю)
использования теоретических	ачи профессиональной деятельности на основе х и практических основ естественных и технических наук,
а также математического а ОПК-1.1.1. Знает теоретические и практические основы естественных наук, а также математического аппарата для решения задач профессиональной деятельности	ппарати Обучающийся знает: — основные понятия и методы линейной алгебры, аналитической геометрии, математического анализа, дифференциальных уравнений, числовых и функциональных рядов, теории вероятностей и математической статистики.
ОПК-1.2.1. Умеет решать задачи профессиональной деятельности с использованием теоретических и практических основ естественных и	Обучающийся умеет: – использовать математический аппарат для решения задач при проектировании зданий, сооружений и инженерных коммуникаций.

Индикаторы достижения компетенций	Результаты обучения по дисциплине (модулю)
технических наук, а также	
математического	
annapama	

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина относится к обязательной части блока 1 «Дисциплины (модули)».

4. Объем дисциплины и виды учебной работы

Для очной формы обучения

Duz vyrobych pokozy v	Всего	Модуль	
Вид учебной работы	часов	1	2
Контактная работа (по видам учебных занятий)	128	64	64
В том числе: - лекции (Л) - практические занятия (ПЗ)	64 48	32 16	32 32
– лабораторные работы (ЛР)	16	16	-
Самостоятельная работа (СРС) (всего)	88	44	44
Контроль	72	36	36
Форма контроля (промежуточной аттестации)	2Э	Э	Э
Общая трудоемкость: час / з.е.	288/8	144/4	144/4

Для очно-заочной формы обучения (все профили, кроме «Автомобильные

дороги»)

Day ywofino i noform	Всего	Модуль	
Вид учебной работы	часов	1	2
Контактная работа (по видам учебных			
занятий)	60	28	32
В том числе:			
– лекции (Л)	30	14	16
– практические занятия (ПЗ)	24	8	16
– лабораторные работы (ЛР)	6	6	-
Самостоятельная работа (СРС) (всего)	156	80	76
Контроль	72	36	36
Форма контроля (промежуточной аттестации)	2Э	Э	Э
Общая трудоемкость: час / з.е.	288/8	144/4	144/4

Примечание: «Форма контроля» – экзамен (Э).

5. Структура и содержание дисциплины

5.1. Разделы дисциплины и содержание рассматриваемых вопросов Для очной формы обучения

№ п/п	Наименование раздела дисциплины	Содержание раздела Модуль 1	Индикаторы достижения компетенций
	раздела	Модуль I Лекция 1. Матрицы и действия над ними. Обратная матрица. Ранг матрицы, вычисление ранга. Определители второго и третьего порядков. Определители высших порядков. Свойства определителей. Решение систем линейных алгебраических уравнений: методы Крамера, Гаусса и матричный. Теорема Кронекера-Капелли. Лекция 2. Векторы и линейные операции над ними. Декартовы координаты векторов. Скалярное, векторное и смешанное произведения векторов. Линейная зависимость и независимость векторов. Размерность и базис линейного пространства. Лекция 3. Прямая на плоскости. Уравнения прямой. Угол между прямыми. Прямая и плоскость в трехмерном пространстве. Уравнения прямой и плоскости. Угол между прямыми, плоскостями, прямой и плоскостью. Расстояния от точки до прямой и до плоскостей. Взаимное расположение прямых и плоскостей. Практическое занятие 1. Действия с матрицами. Вычисление определителей. Обратная матрица. Практическое занятие 2. Решение систем линейных алгебраических уравнений: метод Крамера и матричный метод решения систем. Ранг матрицы. Теорема Кронекера-Капелли. Исследование систем линейных алгебраических уравнений: метод Крамера и матричный метод решения систем Ранг матрицы. Теорема Кронекера-Капелли. Исследование систем линейных алгебраических уравнений. Решение систем методом Гаусса. Практическое занятие 3. Векторы. Прямая на плоскости. Различные уравнения плоскости в пространстве. Угол между плоскости в пространстве. Угол между плоскости в пространстве. Угол между плоскости, Различные уравнения прямой и плоскости. Взаимное расположение прямых и плоскостей. Самостоятельная работа. Собственные числа и собственные векторы матриц. (п. 2 (Тема 1)	достижения
		из раздела 8.5) Кривые второго порядка: окружность, эллипс, гипербола. (п. 3 (Лекция 5, глава 2) из раздела 8.5) Полярная система координат (п. 3 (Лекция 2, глава 1) из раздела 8.5).	

No	Наименование		Индикаторы
л/п	раздела	Содержание раздела	достижения
	дисциплины		компетенций
2	Математический	Лекция 4. Множества и операции над ними.	
	анализ, Часть 1.	Числовые множества. Кванторы. Функции.	
		Числовые последовательности и их пределы.	
		Неперово число. Пределы функций, свойства	
		пределов, основные теоремы о пределах.	
		Бесконечно малые и бесконечно большие	
		функции. Сравнение бесконечно малых	
		функций.	
		Лекция 5. Непрерывность функций в точке и	
		на отрезке. Свойства функций, непрерывных	
		на отрезке. Разрывы функций и их	
		классификация. Производная функции, ее	
		смысл в различных задачах.	
		Дифференцируемость функции в точке и на	
		отрезке. Правила и формулы	
		дифференцирования. Таблица производных.	
		Дифференциал и его геометрический смысл.	
		Инвариантность формы дифференциала.	
		Лекция 6. Производные и дифференциалы	
		высших порядков. Теоремы Ролля, Лагранжа,	
		Коши. Правило Лопиталя. Раскрытие	
		неопределенностей. Формула Тейлора с	
		остаточным членом в форме Лагранжа.	ОПК-1.1.1
		Разложение элементарных функций по	ОПК-1.2.1
		формуле Тейлора. Лекция 7. Экстремумы функций.	
		Необходимые и достаточные условия	
		экстремума. Исследование возрастания,	
		убывания, выпуклости и вогнутости функций.	
		Асимптоты функций. Общая схема	
		исследования функции и построения ее	
		графика.	
		Практическое занятие 4. Комплексные числа	
		и действия над ними. Алгебраическая,	
		тригонометрическая и показательная формы	
		комплексного числа. Формула Эйлера.	
		Практическое занятие 5. Функции. Сложные	
		и обратные функции, графики функций.	
		Элементарные функции. Вычисление	
		пределов последовательностей и функций.	
		Практическое занятие 6. Непрерывность	
		функции в точке. Разрывы функций и их	
		классификация.	
		Практическое занятие 7. Таблица	
		производных. Вычисление производных	
		сложных функций.	
		Производные функций, заданных	
		параметрически и неявно. Вычисление	

№ п/п	Наименование раздела дисциплины	Содержание раздела	Индикаторы достижения компетенций
	дисциплины	производных высших порядков. Раскрытие	компетенции
		неопределенностей.	
		Практическое занятие 8. Исследование	
		функций с помощью первой производной.	
		Монотонность и экстремумы функций.	
		Исследование функций с помощью второй	
		производной, нахождение интервалов	
		выпуклости и вогнутости функций и точек	
		перегиба. Нахождение асимптот графика	
		функции. Построение графика функции с	
		помощью производных.	
		Самостоятельная работа. Замечательные	
		пределы (п. 1 (§17) из раздела 8.5).	
		Эквивалентные бесконечно малые функции	
		(п. 1 (§18) из раздела 8.5).	
3	Математический	Лекция 8. Функции нескольких переменных,	
	анализ, Часть 2.	основные определения, геометрический	
	unusins, 1401b 2.	смысл, пределы, непрерывность.	
		Дифференцирование функций нескольких	
		переменных, частные производные,	
		дифференциалы. Дифференцирование	
		сложной и неявной функций. Частные	
		производные и дифференциалы высших	
		порядков.	
		Лекция 9. Экстремумы функций нескольких	
		переменных. Необходимые условия	
		экстремума. Достаточные условия	
		экстремума (для функции двух переменных).	
		Лекция 10. Первообразная и неопределенный	
		интеграл. Свойства интегралов. Правила	
		интегрирования и таблица интегралов.	
		Интегрирование по частям и метод замены	ОПК-1.1.1
		переменной.	ОПК-1.2.1
		Лекция 11. Разложение многочлена на	
		множители. Разложение рациональных	
		дробей на простейшие дроби.	
		Интегрирование рациональных дробей.	
		Интегрирование некоторых иррациональных	
		и трансцендентных функций.	
		Лекция 12. Определенный интеграл и его	
		свойства. Формула Ньютона-Лейбница и ее	
		применение для вычисления определенных	
		интегралов. Замена переменной и	
		интегрирование по частя в определенном	
		интеграле.	
		Лекция 13. Несобственные интегралы с	
		бесконечными пределами и от	
		неограниченных функций, их свойства,	
		сходимость.	

№ п/п	Наименование раздела дисциплины	Содержание раздела	Индикаторы достижения компетенций
		Лекция 14. Вычисление двойных и тройных	
		интегралов повторным интегрированием.	
		Понятие о замене переменных в двойных и	
		тройных интегралах.	
		Лекция 15. Приложения кратных интегралов.	
		Лекция 16. Криволинейные интегралы по	
		длине дуги, их свойства и вычисление.	
		Криволинейные интегралы по координатам,	
		их свойства и вычисление. Приложения	
		криволинейных интегралов.	
		Лабораторное занятие 1. Вычисление частных	
		производных.	
		Дифференцирование сложной и неявной	
		функций. Использование дифференциала в	
		приближенных вычислениях.	
		Лабораторное занятие 2. Экстремумы	
		функции двух переменных. Нахождение	
		наибольшего и наименьшего значения	
		функции в замкнутой области. Производная	
		по направлению и градиент скалярного поля.	
		Лабораторное занятие 3. Непосредственное	
		интегрирование.	
		Метод подведения под знак дифференциала и	
		замены переменной. Интегрирование по	
		частям. Сведение интеграла к себе	
		подобному.	
		Лабораторное занятие 4. Интегрирование	
		дробно-рациональных функций. Интегрирование простейших	
		1 1 1	
		иррациональных и тригонометрических функций.	
		Дабораторное занятие 5. Определенный	
		интеграл.	
		Лабораторная работа «Интегралы.	
		Приближенное вычисление определенного	
		интеграла»	
		Лабораторное занятие 6. Несобственные	
		интегралы по неограниченному промежутку.	
		Несобственные интегралы от неограниченных	
		функций.	
		Лабораторное занятие 7. Вычисление двойных	
		и тройных интегралов. Повторное	
		интегрирование.	
		Лабораторное занятие 8. Вычисление	
		криволинейных интегралов 1 и 2 рода.	
		Самостоятельная работа. Касательная	
		плоскость и нормаль к поверхности (п. 1 (§45)	
		из раздела 8.5). Условный экстремум (п. 4	
		(Лекция 41, глава 7) из раздела 8.5).	

№ п/п	Наименование раздела дисциплины	Содержание раздела	Индикаторы достижения компетенций
	7	Геометрические и механические приложения	
		определенного интеграла (п. 1 (§41) из	
		раздела 8.5). Поверхностные интегралы 1 и 2	
		рода. Формула Остроградского-Гаусса (п. 1	
		(§57,58) из раздела 8.5). Модуль 2	
4	Пиффороницаница	Лекция 17. Задачи, приводящие к	
4	Дифференциальные уравнения.	дифференциальным уравнениям.	
	уравнения.	Дифференциальные уравнения первого	
		порядка. Задача Коши. Теорема	
		существования и единственности решения	
		задачи Коши.	
		Лекция 18. Основные классы уравнений,	
		интегрируемых в квадратурах: уравнения с	
		разделяющимися переменными и	
		однородные, линейные д.у. первого порядка и	
		д.у. в полных дифференциалах.	
		Лекция 19. Дифференциальные уравнения	
		высших порядков. Задача Коши. Понятие о	
		краевых задачах. Уравнения, допускающие	
		понижение порядка. Линейные	
		дифференциальные уравнения: однородные и	
		неоднородные. Общее решение.	
		Фундаментальная система решений.	
		Лекция 20. Нормальная система	
		дифференциальных уравнений. Задача Коши	
		и теорема существования и единственности.	ОПК-1.1.1
		Системы линейных дифференциальных	ОПК-1.2.1
		уравнений с постоянными коэффициентами.	
		Практическое занятие 9. Решение д.у. с	
		разделяющимися переменными и однородных	
		д.у. первого порядка.	
		Решение линейных д.у. первого порядка,	
		уравнений Бернулли и д.у. в полных	
		дифференциалах.	
		Практическое занятие 10.	
		Дифференциальные уравнения высших	
		порядков. Уравнения, допускающие	
		понижение порядка. Решение линейных	
		однородных д.у. второго порядка с	
		постоянными коэффициентами.	
		Практическое занятие 11. Метод Лагранжа	
		для решения линейных неоднородных д.у.	
		второго порядка с постоянными	
		коэффициентами.	
		Решение линейных неоднородных д.у.	
		второго порядка с постоянными	
		коэффициентами. Решение линейных	
		неоднородных д.у. второго порядка с	

№ п/п	Наименование раздела дисциплины	Содержание раздела	Индикаторы достижения компетенций
		постоянными коэффициентами.	
		Практическое занятие 12. Решение систем	
		линейных уравнений методом исключения.	
		Самостоятельная работа. Численное	
		интегрирование обыкновенных	
		дифференциальных уравнений (п. 5 Глава 10,	
		лекция 68) из раздела 8.5).	
5	Числовые и	Лекция 21. Числовые ряды. Сходимость и	
	функциональные	сумма ряда. Необходимое условие	
	ряды.	сходимости. Действия со сходящимися	
		рядами. Ряды с положительными членами,	
		признаки сходимости. Знакопеременные	
		ряды, ряды с комплексными членами.	
		Абсолютная и условная сходимость. Признак	
		Лейбница. Свойства абсолютно сходящихся	
		рядов.	
		Лекция 22. Функциональные ряды. Область	
		сходимости. Равномерная сходимость.	
		Признак Вейерштрасса. Свойства равномерно	
		сходящихся рядов: непрерывность суммы	
		ряда, дифференцирование и интегрирование	
		рядов. Степенные ряды. Теорема Абеля.	ОПК-1.1.1
		Радиус и круг сходимости. Ряды Тейлора и	ОПК-1.2.1
		Маклорена. Разложение элементарных	
		функций в степенные ряды. Приложения	
		рядов. Практическое занятие 13. Исследование	
		сходимости числовых рядов. Ряды с	
		положительными членами.	
		Исследование сходимости	
		знакочередующихся и знакопеременных	
		рядов.	
		Практическое занятие 14. Нахождение	
		интервала сходимости степенного ряда. Ряды	
		Тейлора и Маклорена. Разложение функции в	
		степенной ряд. Применение рядов к	
		приближенным вычислениям. Ряды Фурье.	
		Самостоятельная работа. Ряды Фурье.	
		Гармонический анализ. (п. 7 из раздела 8.5)	
6	Теория	Лекция 23. Пространство элементарных	
	вероятностей и	событий. Алгебра событий. Вероятность.	
	математическая	Аксиоматическое построение теории	
	статистика	вероятностей.	ОПК-1.1.1
		Элементарная теория вероятностей.	ОПК-1.2.1
		Классическое и геометрическое определение	
		вероятности.	
		Лекция 24. Формула полной вероятности.	
		Формула Байеса.	

№ п/п	Наименование раздела дисциплины	Содержание раздела	Индикаторы достижения компетенций
	,	Схема Бернулли. Теоремы Пуассона и	,
		Муавра-Лапласа.	
		Лекция 25. Дискретные случайные	
		величины. Функция распределения и ее	
		свойства. Математическое ожидание и	
		дисперсия дискретной случайной величины.	
		Непрерывные случайные величины. Функция	
		распределения, плотность вероятности их	
		взаимосвязь и свойства. Математическое	
		ожидание и дисперсия непрерывной	
		случайной величины.	
		Лекция 26. Законы распределения	
		дискретной случайной величины:	
		биномиальный, Пуассона. Законы	
		распределения непрерывной случайной	
		величины: показательный, равномерный.	
		Лекция 27. Нормальное распределение и его	
		свойства. Правило трёх сигма.	
		Лекция 28. Закон больших чисел.	
		Неравенства Чебышева. Теоремы Бернулли и	
		Чебышева. Центральная предельная теорема	
		Ляпунова. Теорема Муавра-Лапласа.	
		Лекция 29. Генеральная совокупность м	
		выборка. Вариационный ряд. Гистограмма,	
		эмпирическая функция распределения,	
		выборочная средняя и дисперсия.	
		Лекция 30. Статистические оценки:	
		несмещенные, эффективные и состоятельные.	
		Погрешность оценки. Доверительная	
		вероятность и доверительный интервал.	
		Определение необходимого объема выборки.	
		Точечные оценки математического ожидания	
		и дисперсии.	
		Лекция 31. Понятие о критериях согласия.	
		Проверка гипотез о равенстве долей и	
		средних. Проверка гипотез о значении	
		параметров нормального распределения.	
		Проверка гипотезы о виде распределения.	
		Лекция 32. Принцип максимального	
		правдоподобия и метод наименьших	
		квадратов.	
		Практическое занятие 15. Алгебра событий.	
		Определение вероятности.	
		Классическое определение вероятности.	
		Теоремы сложения и умножения	
		вероятностей. Независимые события.	
		Практическое занятие 16.	
		Формула полной вероятности и формула	
		Байеса.	

№ Наименование			Индикаторы
п/п	раздела	Содержание раздела	достижения
11/11	дисциплины		компетенций
		Практическое занятие 17. Схема Бернулли.	
		Схема Бернулли при больших значениях п.	
		Практическое занятие 18. Дискретные	
		случайные величины (д.с.в). Функция	
		распределения. Составление закона	
		распределения д.с.в. Числовые	
		характеристики д.с.в.	
		Практическое занятие 19. Непрерывная	
		случайная величина (н.с.в). Функция	
		плотности распределения и ее связь с	
		функцией распределения. Числовые	
		характеристики н.с.в.	
		Практическое занятие 20. Законы	
		распределения д.с.в. и н.с.в.: биномиальный,	
		Пуассона, равномерный.	
		Практическое занятие 21. Решение задач на	
		нормальный закон распределения.	
		Практическое занятие 22. Первичная	
		обработка выборки. Полигон частот.	
		Группированная выборка. Гистограмма.	
		Эмпирическая функция распределения.	
		Числовые характеристики выборки.	
		Практическое занятие 23. Точечные и	
		интервальные оценки математического	
		ожидания и дисперсии генеральной	
		совокупности.	
		Практическое занятие 24. Проверка гипотезы	
		о виде распределения. Критерий Пирсона.	
		Самостоятельная работа.	
		Случайный вектор и его числовые	
		характеристики. Корреляционный момент и	
		коэффициент корреляции. Регрессия (п. 6	
		(Глава 13, лекции 94,95) из раздела 8.5).	

Для очно-заочной формы обучения (все профили, кроме «Автомобильные дороги»)

№ п/п	Наименование раздела	Содержание раздела	Индикаторы достижения
11/11	дисциплины		компетенций
		Модуль 1	
1	Линейная алгебра и аналитическая геометрия	Лекция 1. Матрицы и действия над ними. Обратная матрица. Определители и их свойства. Решение систем линейных алгебраических уравнений: методы Крамера, Гаусса и матричный. Теорема Кронекера-Капелли. Прямая и плоскость в трехмерном пространстве.	ОПК-1.1.1 ОПК-1.2.1

	1		
		Практическое занятие 1. Действия с	
		матрицами. Вычисление определителей.	
		Обратная матрица.	
		Лабораторное занятие 1. Решение систем	
		линейных алгебраических уравнений: метод	
		Крамера, Гаусса и матричный метод решения	
		систем.	
		Практическое занятие 2. Векторы. Скалярное,	
		векторное и смешанное произведения	
		векторов. Прямая и плоскость в пространстве.	
		Самостоятельная работа. (п. 1 (§5,6,7,8) из	
		- ' ' '	
		раздела 8.5).	
		Кривые второго порядка: окружность, эллипс,	
		гипербола (п. 3 (Лекция 5, глава 2) из раздела	
		8.5). Полярная система координат (п. 3	
		(Лекция 2, глава 1) из раздела 8.5).	
2	Математический	Лекция 2. Непрерывность функций в точке и	
	анализ, Часть 1.	на отрезке. Правила и формулы	
		дифференцирования. Таблица производных.	
		Дифференциал и его геометрический смысл.	
		Производные и дифференциалы высших	
		порядков.	
		Лекция 3. Экстремумы функций.	
		Необходимые и достаточные условия	
		экстремума. Асимптоты функций. Общая	ОПК-1.1.1
		схема исследования функции и построения ее	ОПК-1.2.1
		**	O11K-1.2.1
		графика.	
		Лабораторное занятие 2.	
		Вычисление производных сложных функций.	
		Вычисление производных высших порядков.	
		Исследование функций и построение	
		графиков с помощью производной.	
		Самостоятельная работа. Комплексные числа	
		и действия над ними (п. 1 (Глава 6 §27,28) из	
		раздела 8.5)	
3	Математический	Лекция 4 Дифференцирование функций	
	анализ, Часть 2.	нескольких переменных, частные	
		производные, дифференциалы.	
		Лекция 5. Первообразная и неопределенный	
		интеграл. Свойства интегралов. Правила	
		интегрирования и таблица интегралов.	
		Интегрирование по частям и метод замены	
		переменной. Разложение многочлена на	ОПК-1.1.1
		множители. Разложение рациональных	ОПК-1.2.1
		дробей на простейшие дроби.	J.11. 1.2.1
		Интегрирование рациональных дробей.	
		Лекция 6. Определенный интеграл и его	
		свойства. Формула Ньютона-Лейбница и ее	
		применение для вычисления определенных	
		интегралов. Замена переменной и	
		интегрирование по частя в определенном	
		интеграле.	

Лекция 7. Двойной интеграл. Вычисление двойных интегралов повторным интегрированием. Понятие о замене переменных в двойных интегралах. Лабораторное занятие 3. Непосредственное интегрирование. Интегрирование по частям. Интегрирование дробно-рациональных функций. Практическое занятие 3. Определенный интеграл. Практическое занятие 4. Несобственные интегралы. Вычисление двойных интегралов. Самостоятельная работа. Касательная плоскость и нормаль к поверхности (п. 1 (§45) из раздела 8.5). Условный экстремум (п. 4 (Лекция 41, глава 7) из раздела 8.5). Геометрические и механические приложения определенного интеграла (п. 1 (§41) из раздела 8.5). Модуль 2 Лекция 8. Задачи, приводящие к Дифференциальные дифференциальным уравнениям. уравнения. Дифференциальные уравнения первого порядка. Задача Коши. Теорема существования и единственности решения задачи Коши. Основные классы уравнений, интегрируемых в квадратурах: уравнения с разделяющимися переменными и однородные, линейные д.у. первого порядка и д.у. в полных дифференциалах. Лекция 9. Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах. Линейные дифференциальные уравнения: однородные и неоднородные. Общее решение. ОПК-1.1.1 Фундаментальная система решений. ОПК-1.2.1 Лекция 10. Линейные однородные д.у. второго порядка с постоянными коэффициентами. Метод Лагранжа для решения линейных неоднородных д.у. второго порядка с постоянными коэффициентами. Нормальная система дифференциальных уравнений. Практическое занятие 5. Решение д.у. с разделяющимися переменными и однородных д.у. первого порядка, линейных д.у. первого порядка, уравнений Бернулли и д.у. в полных дифференциалах. Практическое занятие 6. Решение линейных однородных д.у. второго порядка с

		постоянными коэффициентами. Метод	
		Лагранжа для решения линейных	
		неоднородных д.у. второго порядка с	
		постоянными коэффициентами.	
		Практическое занятие 7. Метод	
		неопределенных коэффициентов для решения	
		линейных неоднородных д.у. второго порядка	
		с постоянными коэффициентами. Решение	
		систем линейных уравнений методом	
		исключения.	
		Самостоятельная работа. Численное	
		интегрирование обыкновенных	
		дифференциальных уравнений (п. 5 Глава 10,	
		лекция 68) из раздела 8.5).	
5	Числовые и	Лекция 11. Числовые ряды. Сходимость и	
	функциональные	сумма ряда. Необходимое условие	
	ряды.	сходимости. Действия со сходящимися	
		рядами. Ряды с положительными членами,	
		признаки сходимости. Знакопеременные	
		ряды, ряды с комплексными членами.	
		Абсолютная и условная сходимость. Признак	
		Лейбница. Свойства абсолютно сходящихся	
		рядов.	ОПК-1.1.1
		Функциональные ряды. Область сходимости.	ОПК-1.2.1
		Степенные ряды. Радиус сходимости. Ряды	01111 11211
		Тейлора и Маклорена.	
		Практическое занятие 8. Ряды с	
		положительными членами, признаки	
		сходимости. Признак Лейбница. Степенные	
		ряды. Разложение элементарных функций в	
		степенные ряды.	
		Самостоятельная работа. Ряды Фурье.	
		Гармонический анализ. (п. 7 из раздела 8.5)	
6	Теория	Лекция 12. Элементарная теория	
	вероятностей и	вероятностей. Классическое определение	
	математическая	вероятности. Формула полной вероятности.	
	статистика	Формула Байеса. Схема Бернулли.	
		Лекция 13. Функция распределения,	
		плотность вероятности их взаимосвязь и	
		свойства. Математическое ожидание и	
		дисперсия дискретной и непрерывной	
		случайной величины.	ОПК-1.1.1
		Лекция 14.Законы распределения.	<i>ΟΠΚ-1.2.1</i>
		Лекция 15. Генеральная совокупность м	
		выборка. Вариационный ряд. Гистограмма,	
		эмпирическая функция распределения,	
		выборочная средняя и дисперсия.	
		Доверительная вероятность и доверительный	
		интервал.	
		Практическое занятие 9.	
		Классическое определение вероятности.	
		Теоремы сложения и умножения	
	1	1	1

вероятностей. Формула полной вероятности и формула Байеса. Практическое занятие 10. Схема Бернулли. Функция распределения и функция плотности распределения вероятности. Практическое занятие 11. Числовые характеристики д.с.в и н.с.в. Законы распределения д.с.в. и н.с.в.: биномиальный, Пуассона, равномерный, нормальный. Практическое занятие 12. Первичная обработка выборки. Полигон частот. Группированная выборка. Гистограмма. Эмпирическая функция распределения. Числовые характеристики выборки. Самостоятельная работа. Точечные и интервальные оценки математического ожидания и дисперсии генеральной совокупности. Проверка гипотезы о виде распределения. Критерий Пирсона (п. 6 (Глава 13, лекции 97-100) из раздела 8.5). Случайный вектор и его

числовые характеристики. Корреляционный

Регрессия (п. 6 (Глава 13, лекции 94,95) из

момент и коэффициент корреляции.

5.2. Разделы дисциплины и виды занятий Лля очной формы обучения:

раздела 8.5).

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	CPC	Всего
1	Линейная алгебра и аналитическая геометрия.	6	6	0	8	20
2	Математический анализ, Часть 1.	8	10	0	18	36
3	Математический анализ, Часть 2.	18	-	16	18	52
4	Дифференциальные уравнения.	8	8	0	20	36
5	Числовые и функциональные ряды.	4	4	0	4	12
6	Теория вероятностей и математическая статистика.	20	20	0	20	60
	Итого	64	48	16	88	216
Контроль						72
	Всего (общая трудоемкость, час.)					288

Для очно-заочной формы обучения (все профили, кроме «Автомобильные дороги»):

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	CPC	Всего
1	Линейная алгебра и аналитическая геометрия.	2	4	2	20	28
2	Математический анализ, Часть 1.	4	0	2	28	34
3	Математический анализ, Часть 2.	8	4	2	32	46
4	Дифференциальные уравнения.	6	6	0	30	42

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	СРС	Всего
5	Числовые и функциональные ряды.	2	2	0	10	14
6	Теория вероятностей и математическая статистика.	8	8	0	36	52
	Итого	30	24	6	156	216
Контроль					72	
Всего (общая трудоемкость, час.)				288		

6. Оценочные материалы для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Оценочные материалы по дисциплине являются неотъемлемой частью рабочей программы и представлены отдельным документом, рассмотренным на заседании кафедры и утвержденным заведующим кафедрой.

7. Методические указания для обучающихся по освоению дисциплины

Порядок изучения дисциплины следующий:

- 1. Освоение разделов дисциплины производится в порядке, приведенном в разделе 5 «Содержание и структура дисциплины». Обучающийся должен освоить все разделы дисциплины, используя методические материалы дисциплины, а также учебнометодическое обеспечение, приведенное в разделе 8 рабочей программы.
- 2. Для формирования компетенций обучающийся должен представить выполненные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, предусмотренные текущим контролем успеваемости (см. оценочные материалы по дисциплине).
- 3. По итогам текущего контроля успеваемости по дисциплине, обучающийся должен пройти промежуточную аттестацию (см. оценочные материалы по дисциплине).

8. Описание материально-технического и учебно-методического обеспечения, необходимого для реализации образовательной программы по дисциплине

8.1. Помещения представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой бакалавриата, укомплектованные специализированной учебной мебелью и оснащенные оборудованием и техническими средствами обучения, служащими для представления учебной информации большой аудитории: настенным экраном (стационарным или переносным), маркерной доской и (или) меловой доской, мультимедийным проектором (стационарным или переносным).

Все помещения, используемые для проведения учебных занятий и самостоятельной работы, соответствуют действующим санитарным и противопожарным нормам и правилам.

Для проведения лабораторных работ используется лаборатория кафедры «Компьютерный класс» оснащенная компьютерной техникой с обеспечением доступа в электронную информационно-образовательную среду университета.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

- 8.2. Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства:
 - Операционная система Windows;
 - MS Office
 - Антивирус Касперский;
 - Программная система для обнаружения текстовых заимствований в учебных

и научных работах «Антиплагиат.ВУЗ».

- 8.3. Обучающимся обеспечен доступ (удаленный доступ) к современным профессиональным базам данных:
- Электронно-библиотечная система издательства «Лань». [Электронный ресурс]. URL: https://e.lanbook.com/ Режим доступа: для авториз. пользователей;
- Электронно-библиотечная система ibooks.ru («Айбукс»). URL: https://ibooks.ru / Режим доступа: для авториз. пользователей;
- Электронная библиотека ЮРАЙТ. URL: https://urait.ru/— Режим доступа: для авториз. пользователей;
- Единое окно доступа к образовательным ресурсам каталог образовательных интернет-ресурсов и полнотекстовой электронной учебно-методической библиотеке для общего и профессионального образования». URL: http://window.edu.ru/ Режим доступа: свободный.
- Словари и энциклопедии. URL: http://academic.ru/ Режим доступа: свободный.
- Научная электронная библиотека "КиберЛенинка" это научная электронная библиотека, построенная на парадигме открытой науки (Open Science), основными задачами которой является популяризация науки и научной деятельности, общественный контроль качества научных публикаций, развитие междисциплинарных исследований, современного института научной рецензии и повышение цитируемости российской науки. URL: http://cyberleninka.ru/ Режим доступа: свободный.
- 8.4. Обучающимся обеспечен доступ (удаленный доступ) к информационным справочным системам:
- Национальный Открытый Университет "ИНТУИТ". Бесплатное образование. [Электронный ресурс]. URL: https://intuit.ru/ Режим доступа: свободный.
- 8.5. Перечень печатных изданий, используемых в образовательном процессе: 1. Письменный Д. Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам [Текст] / Д. Т. Письменный. 9-е изд. Москва: Айрис-пресс, 2020. 287 с.: ил. (Высшее образование). ISBN 978-5-8112-6085-0: 584 р. Текст: непосредственный.
- 2. Письменный Д. Т. Конспект лекций по высшей математике: полный курс/14-е изд.-Москва: Айрис-Пресс, 2022. – 608 с.: ил. - (Высшее образование). – ISBN 978-5-8112-6472-8 - Текст: непосредственный и аналоги годов издания 2003-2019
- 3. Математический анализ: учебное пособие. Санкт-Петербург: ПГУПС. URL: http://e.lanbook.com/books/element.php?pl1_id=66398.
- 4. Ряды: учеб. пособие / В. В. Гарбарук, З. С. Галанова, Н. В. Лапшина, Е. И. Спиридонов.
- Санкт-Петербург: ПГУПС, 2021. 52 с. ISBN 978-5-7641-0604-5: Б. ц.
- 5. Гарбарук, В. В. Математическая статистика [Текст]: учебное пособие для студентов технических вузов: Рекомендовано Научно-методическим советом по математике вузов Северо-Запада РФ / В. В. Гарбарук, Ю. Ю. Пупышева. Санкт-Петербург: ПГУПС, 2022. 55 с.: ил. Библиогр.: с. 47. ISBN 978-5-7641-0395-2: 73 р. Текст: непосредственный. 6. Решение задач по высшей математике. Интенсивный курс для студентов технических
- 6. Решение задач по высшеи математике. Интенсивный курс для студентов технических вузов: Учебное пособие / Гарбарук В. В., Родин В. И., Шварц М. А.— СПб: Изд-во «Лань», 2022. 444 с.- Текст: непосредственный.
- 7. Интенсивный курс математики [Текст]: учебное пособие. Ч. 2 / Е. А. Благовещенская [и др.]; ФГБОУ ВО ПГУПС. Санкт-Петербург: ФГБОУ ВО ПГУПС, 2019. 201 с.: ил., табл. Библиогр. : с. 201. ISBN 978-5-7641-1117-9. ISBN 978-5-7641-1383-8: 272.13 р. Текст: непосредственный.

- 8. Высшая математика. Стандартные задачи с основами теории: учебное пособие для вузов / А. Ю. Вдовин, Л. В. Михалева, В. М. Мухина [и др.]. — 3-е изд., стер. — Санкт-Петербург: Лань, 2022. — 188 с. — ISBN 978-5-8114-9437-8. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/195419 (дата обращения: 15.12.2024). — Режим доступа: для авториз. пользователей.
- 9. Миносцев, В. Б. Курс математики для технических высших учебных заведений: учебное пособие / В. Б. Миносцев, В. Г. Зубков, В. А. Ляховский. — 2-е изд., испр. — Санкт-Петербург: Лань, 2021 — Часть 1: Аналитическая геометрия. Пределы и ряды. Функции и производные. Линейная и векторная алгебра — 2022. — 544 с. — ISBN 978-5-8114-1558-8. — Текст: электронный // Лань: электронно-библиотечная система. — URL:
- https://e.lanbook.com/book/211352 (дата обращения: 15.12.2024).
- Режим доступа: для авториз. пользователей.
- 10. Миносцев, В. Б. Курс математики для технических высших учебных заведений: учебное пособие / В. Б. Миносцев, В. А. Ляховский, А. И. Мартыненко. — 2-е изд., испр. — Санкт-Петербург: Лань, 2021 — Часть 2: Функции нескольких переменных. Интегральное исчисление. Теория поля — 2021. — 432 с. — ISBN 978-5-8114-1559-5. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/168571 (дата обращения: 15.12.2024). — Режим доступа: для авториз. пользователей.
- 11. Миносцев, В. Б. Курс математики для технических высших учебных заведений: учебное пособие / В. Б. Миносцев, Н. А. Берков, В. Г. Зубков. — 2-е изд., испр. — Санкт-Петербург: Лань, 2021 — Часть 3: Дифференциальные уравнения. Уравнения математической физики. Теория оптимизации — 2022. — 528 с. — ISBN 978-5-8114-1560-1. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/211358 (дата обращения: 15.12.2024). — Режим доступа: для авториз. пользователей.
- 12. Пушкарь, Е. А. Курс математики для технических высших учебных заведений: учебное пособие / Е. А. Пушкарь, Н. А. Берков, А. И. Мартыненко. — 2-е изд., испр. — Санкт-Петербург: Лань, 2021 — Часть 4: Теория вероятностей и математическая статистика — 2022. — 304 с. — ISBN 978-5-8114-1561-8. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/211382 (дата обращения: 15.12.2024). — Режим доступа: для авториз. пользователей.
- 13. Гарбарук, В. В. Решение задач по математике. Адаптивный курс для студентов технических вузов [Электронный ресурс]: учебное пособие / В. В. Гарбарук, В. И. Родин, И. М. Соловьева. - 3-е изд., испр. - Санкт-Петербург: Лань, 2021. - 688 с. - URL: https://e.lanbook.com/book/174292https://e.lanbook.com/img/cover/book/174292.jpg. - ISBN 978-5-8114-7174-4: Б. ц.
- 8.6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», используемых в образовательном процессе:
- Личный кабинет ЭИОС [Электронный ресурс]. URL: my.pgups.ru Режим доступа: для авториз. пользователей;
- Электронная информационно-образовательная среда. [Электронный ресурс]. – URL: https://sdo.pgups.ru — Режим доступа: для авториз. пользователей;

Разработчик рабочей программы, доцент 16.12.2024

Е.И.Спиридонов